(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(f(a)) → f(g(n__f(n__a)))
f(X) → n__f(X)
a → n__a
activate(n__f(X)) → f(activate(X))
activate(n__a) → a
activate(X) → X
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
activate(n__f(X)) →+ f(activate(X))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [X / n__f(X)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(f(a)) → f(g(n__f(n__a)))
f(X) → n__f(X)
a → n__a
activate(n__f(X)) → f(activate(X))
activate(n__a) → a
activate(X) → X
S is empty.
Rewrite Strategy: FULL
(5) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
g/0
(6) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(f(a)) → f(g)
f(X) → n__f(X)
a → n__a
activate(n__f(X)) → f(activate(X))
activate(n__a) → a
activate(X) → X
S is empty.
Rewrite Strategy: FULL
(7) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(8) Obligation:
TRS:
Rules:
f(f(a)) → f(g)
f(X) → n__f(X)
a → n__a
activate(n__f(X)) → f(activate(X))
activate(n__a) → a
activate(X) → X
Types:
f :: g:n__f:n__a → g:n__f:n__a
a :: g:n__f:n__a
g :: g:n__f:n__a
n__f :: g:n__f:n__a → g:n__f:n__a
n__a :: g:n__f:n__a
activate :: g:n__f:n__a → g:n__f:n__a
hole_g:n__f:n__a1_0 :: g:n__f:n__a
gen_g:n__f:n__a2_0 :: Nat → g:n__f:n__a
(9) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f,
activateThey will be analysed ascendingly in the following order:
f < activate
(10) Obligation:
TRS:
Rules:
f(
f(
a)) →
f(
g)
f(
X) →
n__f(
X)
a →
n__aactivate(
n__f(
X)) →
f(
activate(
X))
activate(
n__a) →
aactivate(
X) →
XTypes:
f :: g:n__f:n__a → g:n__f:n__a
a :: g:n__f:n__a
g :: g:n__f:n__a
n__f :: g:n__f:n__a → g:n__f:n__a
n__a :: g:n__f:n__a
activate :: g:n__f:n__a → g:n__f:n__a
hole_g:n__f:n__a1_0 :: g:n__f:n__a
gen_g:n__f:n__a2_0 :: Nat → g:n__f:n__a
Generator Equations:
gen_g:n__f:n__a2_0(0) ⇔ n__a
gen_g:n__f:n__a2_0(+(x, 1)) ⇔ n__f(gen_g:n__f:n__a2_0(x))
The following defined symbols remain to be analysed:
f, activate
They will be analysed ascendingly in the following order:
f < activate
(11) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(12) Obligation:
TRS:
Rules:
f(
f(
a)) →
f(
g)
f(
X) →
n__f(
X)
a →
n__aactivate(
n__f(
X)) →
f(
activate(
X))
activate(
n__a) →
aactivate(
X) →
XTypes:
f :: g:n__f:n__a → g:n__f:n__a
a :: g:n__f:n__a
g :: g:n__f:n__a
n__f :: g:n__f:n__a → g:n__f:n__a
n__a :: g:n__f:n__a
activate :: g:n__f:n__a → g:n__f:n__a
hole_g:n__f:n__a1_0 :: g:n__f:n__a
gen_g:n__f:n__a2_0 :: Nat → g:n__f:n__a
Generator Equations:
gen_g:n__f:n__a2_0(0) ⇔ n__a
gen_g:n__f:n__a2_0(+(x, 1)) ⇔ n__f(gen_g:n__f:n__a2_0(x))
The following defined symbols remain to be analysed:
activate
(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
activate(
gen_g:n__f:n__a2_0(
n9_0)) →
gen_g:n__f:n__a2_0(
n9_0), rt ∈ Ω(1 + n9
0)
Induction Base:
activate(gen_g:n__f:n__a2_0(0)) →RΩ(1)
gen_g:n__f:n__a2_0(0)
Induction Step:
activate(gen_g:n__f:n__a2_0(+(n9_0, 1))) →RΩ(1)
f(activate(gen_g:n__f:n__a2_0(n9_0))) →IH
f(gen_g:n__f:n__a2_0(c10_0)) →RΩ(1)
n__f(gen_g:n__f:n__a2_0(n9_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(14) Complex Obligation (BEST)
(15) Obligation:
TRS:
Rules:
f(
f(
a)) →
f(
g)
f(
X) →
n__f(
X)
a →
n__aactivate(
n__f(
X)) →
f(
activate(
X))
activate(
n__a) →
aactivate(
X) →
XTypes:
f :: g:n__f:n__a → g:n__f:n__a
a :: g:n__f:n__a
g :: g:n__f:n__a
n__f :: g:n__f:n__a → g:n__f:n__a
n__a :: g:n__f:n__a
activate :: g:n__f:n__a → g:n__f:n__a
hole_g:n__f:n__a1_0 :: g:n__f:n__a
gen_g:n__f:n__a2_0 :: Nat → g:n__f:n__a
Lemmas:
activate(gen_g:n__f:n__a2_0(n9_0)) → gen_g:n__f:n__a2_0(n9_0), rt ∈ Ω(1 + n90)
Generator Equations:
gen_g:n__f:n__a2_0(0) ⇔ n__a
gen_g:n__f:n__a2_0(+(x, 1)) ⇔ n__f(gen_g:n__f:n__a2_0(x))
No more defined symbols left to analyse.
(16) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
activate(gen_g:n__f:n__a2_0(n9_0)) → gen_g:n__f:n__a2_0(n9_0), rt ∈ Ω(1 + n90)
(17) BOUNDS(n^1, INF)
(18) Obligation:
TRS:
Rules:
f(
f(
a)) →
f(
g)
f(
X) →
n__f(
X)
a →
n__aactivate(
n__f(
X)) →
f(
activate(
X))
activate(
n__a) →
aactivate(
X) →
XTypes:
f :: g:n__f:n__a → g:n__f:n__a
a :: g:n__f:n__a
g :: g:n__f:n__a
n__f :: g:n__f:n__a → g:n__f:n__a
n__a :: g:n__f:n__a
activate :: g:n__f:n__a → g:n__f:n__a
hole_g:n__f:n__a1_0 :: g:n__f:n__a
gen_g:n__f:n__a2_0 :: Nat → g:n__f:n__a
Lemmas:
activate(gen_g:n__f:n__a2_0(n9_0)) → gen_g:n__f:n__a2_0(n9_0), rt ∈ Ω(1 + n90)
Generator Equations:
gen_g:n__f:n__a2_0(0) ⇔ n__a
gen_g:n__f:n__a2_0(+(x, 1)) ⇔ n__f(gen_g:n__f:n__a2_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
activate(gen_g:n__f:n__a2_0(n9_0)) → gen_g:n__f:n__a2_0(n9_0), rt ∈ Ω(1 + n90)
(20) BOUNDS(n^1, INF)